Fonctions de référence 2

1 La fonction logarithme népérien

1.1 Définition et propriétés

La fonction exponentielle est continue et strictement croissante sur \mathbb{R} . Le corollaire du théorème des valeurs intermédiaires permet d'affirmer que quel que soit le réel a strictement positif, il existe un réel unique x tel que $e^x = a$.

Définition

Si a est un réel strictement positif, la solution unique sur \mathbb{R} de l'équation $e^x = a$, d'inconnue x, s'appelle **logarithme népérien** de a, et on note $x = \ln a$.

Définition

La fonction logarithme népérien est définie sur $]0; +\infty[$ par : $x \longmapsto \ln x$. Autrement dit, pour tout x strictement positif,

$$y = \ln x \iff e^y = x$$

On dit que la fonction ln est la **fonction réciproque** de la fonction exp.

Ainsi : $\ln 1 = 0$ puisque $e^0 = 1$ et $\ln e = 1$ puisque $e^1 = e$.

De plus : si
$$\ln x = y$$
 alors $x = e^y$ et $\frac{1}{x} = e^{-y}$ soit $\ln \left(\frac{1}{x}\right) = -y$.

On obtient donc, pour tout réel x strictement positif :

$$\ln \frac{1}{x} = -\ln x$$

Propriété

Pour tout réel x, $\ln(e^x) = x$ et pour tout réel x strictement positif, $e^{\ln x} = x$

1.2 Variations et limites

Propriété

La fonction logarithme népérien est continue et dérivable sur $]0; +\infty[$ et $\ln'(x) = \frac{1}{x}$.

Démonstration partielle

On admet que la fonction ln est continue et dérivable sur $]0; +\infty[$.

Si on pose
$$f(x) = \exp(\ln x) = x$$
, alors $f'(x) = \ln'(x) \times \exp(\ln x) = \ln'(x) \times x$.

Or
$$f'(x) = 1$$
, d'où $\ln'(x) = \frac{1}{x}$.

Théorème

La fonction logarithme népérien est strictement croissante sur $]0; +\infty[$.

 $\ln'(x) = \frac{1}{x}$ et $\frac{1}{x} > 0$ pour tout x > 0; puisque sa dérivée est strictement positive sur $]0; +\infty[$, on conclut que la fonction \ln est strictement croissante sur $]0; +\infty[$.

Corollaire:

Pour tout réels a et b strictement positifs,

$$a < b \iff \ln a < \ln b \text{ et } a = b \iff \ln a = \ln b$$

En particulier : 0 < x < 1 équivaut à $\ln x < 0$ et x > 1 équivaut à $\ln x > 0$.

Théorème

$$\lim_{x \longrightarrow +\infty} \ln x = +\infty \qquad \text{et} \qquad \lim_{\substack{x \longrightarrow 0 \\ x > 0}} \ln x = -\infty$$

Démonstration

On utilise la définition d'une limite infinie à l'infini : quel que soit le réel A, si $x > e^A$ alors $\ln x > A$; donc l'intervalle A; $A = \ln$

Ensuite :
$$\lim_{\substack{x \longrightarrow 0 \\ x > 0}} \ln x = \lim_{\substack{x \longrightarrow 0 \\ x > 0}} - \ln \frac{1}{x}$$
 ; or, $\lim_{\substack{x \longrightarrow 0 \\ x > 0}} \frac{1}{x} = +\infty$ et $\lim_{X \longrightarrow +\infty} - \ln X = -\infty$

Donc, par composition, on obtient $\lim_{\substack{x \to \infty 0 \\ x \to 0}} \ln x = -\infty$.

Tableau de variation et représentation graphique

On construit le tableau de variation à l'aide des résultats précédents. Puisque la fonction \ln est la réciproque de la fonction \exp , les courbes représentatives de ces deux fonctions sont symétriques par rapport à la droite d'équation y=x.

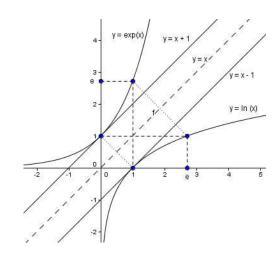
La courbe passe par les points de coordonnées (1; 0) et (e; 1).

La tangente à la courbe au point d'abscisse 1 a pour coefficient directeur $\ln'(1) = 1$.

Puisque $\lim_{\substack{x \to 0 \\ x > 0}} \ln x = -\infty$, la courbe représentative de la fonction logarithme népérien admet une

asymptote d'équation x=0, soit l'axe des ordonnées.

x	() +∞
$\ln'(x) = \frac{1}{x}$		+
$\ln x$		$+\infty$ $-\infty$



1.3 Relation fonctionnelle

La fonction \ln est la réciproque de la fonction \exp . On peut donc déduire une relation fonctionnelle pour la fonction \ln à partir de celle existant pour la fonction \exp :

pour tout réels
$$x$$
 et y , $\exp(x) \exp(y) = \exp(x+y)$
donc $\ln(\exp(x) \exp(y)) = \ln(\exp(x+y)) = x+y$;
si on pose $a = \exp(x)$ et $b = \exp(y)$, soit $x = \ln a$ et $y = \ln b$ on obtient:

Théorème

Quels que soient les réels a et b, strictement positifs :

$$\ln(a \times b) = \ln a + \ln b$$

Remarque

Si a=b, la relation fonctionnelle nous donne : $\ln(a^2)=2\ln a$. On peut alors en déduire : $\ln x=\ln((\sqrt{x})^2)=2\ln(\sqrt{x})$, soit $\ln(\sqrt{x})=\frac{1}{2}\ln x$.

1.3.1 Propriétés

Quels que soient les réels a,b strictement positifs et l'entier relatif n:

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$
 $\ln\left(\frac{1}{b}\right) = -\ln b$ $\ln(a^n) = n \ln a$

Démonstration

- La deuxième propriété a déjà été prouvée.
- pour la première propriété, on utilise la relation fonctionnelle :

$$\ln \frac{a}{b} = \ln \left(a \times \frac{1}{b} \right) = \ln a + \ln \frac{1}{b} = \ln a - \ln b.$$

• pour la troisième propriété notée P_n : " $\ln(a^n) = n \ln a$ "; nous allons d'abord démontrer par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $\ln(a^0) = \ln 1 = 0$ et $0 \ln a = 0$ donc P_0 est vraie.

Hérédité : supposons que la propriété est vraie pour un certain entier naturel k; soit $\ln(a^k) = k \ln a$.

Alors $\ln(a^{k+1}) = \ln(a^k \times a) = \ln(a^k) + \ln a = k \ln a + \ln a$ d'après l'hypothèse de récurrence, donc $\ln(a^{k+1}) = (k+1) \ln a$ et P_{k+1} est vraie.

Conclusion : P_n est vraie pour tout $n \in \mathbb{N}$.

Maintenant, si n est un entier relatif négatif, $\ln(a^n) = \ln \frac{1}{a^{-n}} = -\ln(a^{-n})$ or $(-n) \in \mathbb{N}$; on peut donc écrire $\ln(a^{-n}) = (-n) \ln a$ On en déduit que : $\ln(a^n) = n \ln a$.

1.4 Compléments

1.4.1 Calcul de limites

Théorème

$$\lim_{x \longrightarrow +\infty} \frac{\ln x}{x} = 0 \qquad \text{et} \qquad \lim_{x \longrightarrow 0} \frac{\ln(1+x)}{x} = 1$$

Démonstration

• On sait que pour tout a réel, $a < \exp(a)$ donc pour tout a strictement positif, $\ln a \le a$. (Croissance de la fonction \ln). On en déduit que pour tout x strictement positif $\ln \sqrt{x} \le \sqrt{x}$ d'où $\frac{1}{2} \ln x \le \sqrt{x}$ et donc $\ln x \le 2\sqrt{x}$.

Alors, pour tout
$$x \ge 1$$
: $0 \le \frac{\ln x}{x} \le \frac{2\sqrt{x}}{x}$, c'est-à-dire : $0 \le \frac{\ln x}{x} \le \frac{2}{\sqrt{x}}$.

De plus $\lim_{x\to +\infty}\frac{2}{\sqrt{x}}=0$, donc par application du théorème des gendarmes, $\lim_{x\to +\infty}\frac{\ln x}{x}=0$.

Remarque

On pouvait aussi écrire $\frac{\ln x}{x} = \frac{X}{\exp(X)} = \frac{1}{\frac{\exp(X)}{X}}$, et appliquer les théorèmes sur la composition et l'inverse de limites.

•
$$\frac{\ln(1+x)}{x} = \frac{\ln(1+x) - \ln 1}{x}$$
 est le taux d'accroissement de la fonction $\ln \ln 1$.

Sa limite quand x tend vers 0 est le nombre dérivé de la fonction \ln en 1 qui est 1.

Donc
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = 1.$$

1.4.2 Calcul de dérivées

On montre que:

si u est une fonction dérivable et strictement positive sur un intervalle I de \mathbb{R} , alors la fonction composée $\ln \circ u$, notée aussi $\ln u$, est dérivable sur I et

$$(\ln \circ u)'(x) = \frac{u'(x)}{u(x)}$$

Par exemple, on obtient pour tout $x>-\frac{b}{a}$:

$$(\ln(ax+b))' = \frac{a}{ax+b}$$

Remarque

u étant strictement positive, le signe de $(\ln u)'$ est le même que celui de u'.

Cette dérivée satisfait à la formule générale :

$$(f(u(x))' = u'(x) \times f'(u(x))$$

2 Fonction logarithme décimal

2.1 Définition

On appelle fonction logarithme décimal la fonction notée \log , définie sur $]0;+\infty[$ par :

$$\log x = \frac{\ln x}{\ln 10}$$

En particulier : $\log 1 = 0$, $\log 10 = 1$.

2.2 Propriétés

Les propriétés de la fonction logarithme décimal se déduisent immédiatement de celles de la fonction \ln .

Par exemple, pour tout entier relatif n, $\log 10^n = \frac{\ln 10^n}{\ln 10} = \frac{n \ln 10}{\ln 10} = n$.

2.2.1 Dérivée

La fonction logarithme décimal est continue et dérivable sur $]0;+\infty[$ et

$$\log'(x) = \frac{1}{x \ln 10}$$

2.2.2 Variations

La fonction logarithme décimal est strictement croissante sur $]0; +\infty[$.

2.2.3 Limites

$$\lim_{x \longrightarrow +\infty} \log x = +\infty \qquad \text{et} \qquad \lim_{\substack{x \longrightarrow 0 \\ x > 0}} \log x = -\infty$$

2.2.4 Relations fonctionnelles

Quels que soient les réels a et b, strictement positifs :

$$\log(a \times b) = \log a + \log b$$

Quels que soient les réels a, b strictement positifs et l'entier relatif n:

$$\log\left(\frac{a}{b}\right) = \log a - \log b$$
 $\log\left(\frac{1}{b}\right) = -\log b$ $\log(a^n) = n\log a$