Mathématiques expertes Exercices d'arithmétique

1 Récurrence

- 1. Démontrer par récurrence que $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
- 2. Démontrer par récurrence que $0+2+4+6+\ldots+2n=n(n+1)$ pour tout n entier naturel.
- 3. Démontrer par récurrence que $1^2+2^2+3^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$
- 4. Démontrer que $2^n \ge n$ pour tout n entier naturel.
- 5. Soit P(n) et Q(n) les propriétés $4^n 1$ est divisible par 3 et $4^n + 1$ est divisible par 3.
 - (a) Montrer que P(n) et Q(n) sont héréditaires.
 - (b) Montrer que P(n) est vraie pour tout n et que Q(n) est fausse pour tout n.

Aide:
$$4^{n+1} - 1 = 4(4^n - 1) + 3$$
 et $4^{n+1} + 1 = 4(4^n + 1) - 3$

- 6. Prouver que $n^2 + n + 2$ est pair pour tout n.
- 7. Prouver les propriétés suivantes :
 - (a) $5^{2n} 3^n$ est divisible par 11;
 - (b) $7^n 1$ est divisible par 6;
 - (c) $3^{2n} 2^n$ est divisible par 7.

2 Division euclidienne

- 1. Effectuer la division euclidienne de 61 par 8 dans \mathbb{N} . En utilisant le résultat précédent, déterminer les couples (q,r) d'éléments de \mathbb{Z} vérifiant -61 = 8q + r et |r| < 8.
- 2. Effectuer les divisions euclidiennes dans \mathbb{Z} de 213 par 8 et de (-213) par 8.

3 Congruence

- 1. Quel est le reste de la division par 5 de 17^{53} ?
- 2. Dans ℕ, quels peuvent être le diviseur et le reste d'une division euclidienne dont le dividende est 542 et le quotient 12?
- 3. Résoudre dans \mathbb{Z} les équations : $x^{11} \equiv x \pmod{.11}$, $x^{10} \equiv 1 \pmod{.11}$, $x^5 \equiv 1 \pmod{.11}$.
- 4. Montrer que $10^6 \equiv 1 \pmod{.7}$.
- 5. Résoudre dans \mathbb{Z} le système $x \equiv 1 \pmod{3}$ et $x \equiv 2 \pmod{7}$

4 Divisibilité

- 1. Combien y a-t-il de multiples de 11 compris entre -1000 et 1000?
- 2. Déterminer la liste des diviseurs de 60.
- 3. Montrer que $2^{32} \equiv 1$ [5]
- 4. Sans effectuer la division, montrer que 23157 est divisible par 9. On écrira $23157 = 2 \times 10^4 + 3 \times 10^3 + 10^2 + 5 \times 10 + 7$

- 5. Montrer que $9^n 2^n$ est divisible par 7 en utilisant un raisonnement par récurrence puis à l'aide des congruences.
- 6. Montrer que $3^{2n+1} + 2^{n+2}$ est divisible par 7.
- 7. Soit n un entier naturel, montrer que $n^3 n$ est divisible par 6.
- 8. Démontrer que quel que soit l'entier $n, n \ge 1$, l'entier $A, A = n^2(n^2 1)$ est divisible par 12.
- 9. Trouver les entiers n tels que la fraction $\frac{n+17}{n-1}$ soit un entier (on pourra écrire $\frac{n+17}{n-1}=a+\frac{b}{n-1}$), avec $a\in\mathbb{N}$ et $b\in\mathbb{N}$.
- 10. Trouver les caractères de divisibilité par 3, 4, 9, 11.
- 11. Vérifier que $10^3 \equiv -1 \pmod{7}$. En déduire un critère de divisibilité par 7.
- 12. Déterminer les chiffres inconnus x et y de sorte que le nombre dont l'écriture dans le système décimal est x43y soit divisible par 2 et par 9.
- 13. (a) Soit *n* un entier non divisible par 5; montrer que son carré augmenté ou diminué de l est divisible par 5.
 - (b) Soit n un entier non divisible par 7; montrer que son cube augmenté ou diminué de 1 est divisible par 7
- 14. (a) Quels sont les restes possibles de la division de a^4 par 5?
 - (b) Démontrer alors que $a^5 a$ est divisible par 10.
- 15. Les fractions suivantes sont-elles irréductibles : $\frac{n^2}{n+1}$ où n est un entier différent de -1 ? $\frac{n}{2n+1}$ où n est un entier quelconque ?