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Résumé

We offer a unified approach to the theory of concave majorants
of random walks by providing a path transformation for a walk of
finite length that leaves the law of the walk unchanged whilst providing
complete information about the concave majorant. This leads to a
description of a walk of random geometric length as a Poisson point
process of excursions away from its concave majorant, which is then
used to find a complete description of the concave majorant of a walk
of infinite length. In the case where subsets of increments may have the
same arithmetic mean, we investigate three nested compositions that
naturally arise from our construction of the concave majorant.

1 Introduction

Let S0 = 0 and Sj =
∑j

i=1 Xi for 1 ≤ j ≤ n, where X1, . . . , Xn are
exchangeable random variables. Let A be the assumption that almost surely
no two subsets of X1, . . . , Xn have the same arithmetic mean, and assume
for now that A holds. Let S[0,n] := {(j, Sj) : 0 ≤ j ≤ n}, so that S[0,n] is the
random walk of length n with increments distributed like X1, . . . , Xn. Let

0 < Nn,1 < Nn,1 + Nn,2 < · · · < Nn,1 + · · ·+ Nn,Fn = n

be the successive times j with 0 ≤ j ≤ n such that Sj = C̄ [0,n](j), where
C̄ [0,n] is the concave majorant of the walk S[0,n], i.e. the least concave function
C on [0, n] such C(j) ≥ Sj for 1 ≤ j ≤ n. The random variable Fn is the
number of faces of the concave majorant. Without assumption A, more care
needs to be taken in defining the faces of the concave majorant ; this will be
discussed further in Section 6.
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The ith face of the concave majorant is a chord from (Nn,1 + · · · +
Nn,i−1, SNn,1+···+Nn,i−1) to (Nn,1 + · · · + Ni, SNn,1+···+Nn,i). We define the
length, increment and slope of the ith face to be Ni, ∆n,i and ∆n,i

Ni
respecti-

vely, where

∆n,i := (SNn,1+···+Nn,i − SNn,1+···+Nn,i−1), for 1 ≤ i ≤ Fn.

In the 1950’s, E. Sparre Andersen [2] discovered the following remarkable
result : for any exchangeable X1, . . . , Xn satisfying assumption A, there is
the equality in distribution

Fn
d= Kn =

n∑
j=1

Ij (1)

where Kn is the number of cycles in a uniformly distributed random permu-
tation of the set [n] := {1, . . . , n}, and Ij , j = 1, 2, . . . is a sequence of inde-
pendent Bernoulli variables with P(Ij = 1) = 1/j and P(Ij = 0) = 1 − 1/j
for each j. The second equality in (1) is an elementary and well known re-
presentation of Kn which holds for a number of natural constructions of
uniform random permutations of n simultaneously for all n, including both
the construction from records of the Xi [9], and the Chinese Restaurant
Process [14].

A further result that seems to have been known by Spitzer [19], and
shown explicitly by Goldie [9] using a generalization by Brunk of Spitzer’s
Lemma [5], is that under assumption Athe distribution of the partition of
n generated by the lengths of the faces of the concave majorant on [0, n],
which may be encoded by these lengths in non-increasing order, has the
same distribution as the partition of n generated by the cycles of a uniform
random permutation - we will prove this result as a corollary of our main
theorem. Thus the partition generated by the lengths of the faces of the
concave majorant may be generated by a discrete uniform stick breaking
process on [0, n] [14]. The result raises the following problem :

The rearrangement problem. Conditionally given that the partition of
n generated by the lengths faces of the concave majorant of the random walk
S[0,n] has segment lengths n1, . . . , nk with n1 ≥ n2 ≥ . . . ≥ 0,

– in what order and with what increments should the faces f1, . . . , fk of
the concave majorant with lengths n1, . . . , nk respectively be arranged
to recreate the concave majorant of the random walk S[0,n] ?

– given the concave majorant, what is the distribution of values of the
random walk S[0,n] between vertices of the concave majorant ?

We answer this question by giving in Theorem 1 a simultaneous construction
of the walk and its concave majorant conditional on the partition generated
by the lengths of the faces of the concave majorant. The theorem will be
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proved under assumption Ain Section 2, and in the general case in Section
6, with the key idea of both proofs being that it is enough to show that the
theorem is true when X1, . . . , Xn are samples without replacement from a
set of n real numbers. Since the construction given in the theorem applies to
general exchangeable X1, . . . , Xn it allows us to investigate in Section 6 the
structure of the concave majorant in the general case. The statement of the
theorem is complicated, but easy to describe informally, particularly under
assumption A, in which case the construction is as follows. Conditional on
the lengths of the blocks of the partition generated by the concave majorant
being (n1, . . . , nk) :

– Split X1, . . . , Xn into k blocks

(X1, . . . , Xn1)(Xn1+1, . . . , Xn1+n1) · · · (X∑k−1
i=1 ni+1, . . . , X

∑k
i=1 ni

)

– Arrange the blocks in order of decreasing arithmetic means.
– Perform the unique cyclic permutations of the increments within each

block such that the walk with those cyclically permuted increments
remains below the line joining its start and end points.

This process defines a permutation of the original increments which leaves the
distribution of the walk S[0,n] unchanged and at the same time provides us
with information about the concave majorant. In the case where X1, . . . , Xn

are independent, then we may just generate independent walks of length
n1, . . . , nk, cyclically permute the increments of each walk appropriately,
and then arrange the walks in order of decreasing slope. The idea of using
cyclic permutations to transform random walk bridges into excursions is due
to Vervaat [21].

When assumption A is not satisfied there are two more complications.
Some of the blocks may have the same arithmetic mean, in which case their
ordering is chosen uniformly, and within a block there may be more than one
cyclic permutation of increments that leaves the walk with those increments
below the line joining its start and end points, in which case the cyclic per-
mutation is chosen uniformly from the possible options. By exchangeability,
it would also work to take the blocks with the same arithmetic mean in or-
der of appearance rather than randomly ordering them, but this makes the
statement of the theorem harder and in fact does not make the proof any
easier.

To facilitate the statement of the theorem, it is necessary to define the set
of all permutations that cyclically permute increments within certain blocks
and then arrange those blocks in some order.

Definition. Let Σn be the set of permutations of [n], and let Pn be the set
of partitions of n, encoded in non-increasing order. For (n1, . . . , nk) ∈ Pn let
Σ(n1,...,nk) ⊆ Σn be such that σ ∈ Σ(n1,...,nk) if and only if for some τ ∈ Σk

and (r1, . . . , rk) ∈ Zk we have

σ
(∑i−1

l=1 nτ(l) + j
)

=
(∑τ(i)−1

l=1 nl

)
+ ((j + ri) mod τ(i)) + 1

3



for 1 ≤ j ≤ nτ(i), 1 ≤ i ≤ k.

In the definition of Σ(n1,...,nk) just given, the cyclic shift chosen for the
τ(i)th block is given by ri and the ordering of the k blocks is given by τ .

Theorem 1. Let S0 = 0 and Sj =
∑j

`=1 X` for 1 ≤ j ≤ n, where X1, . . . , Xn

are random variables with any exchangeable joint distribution. Let S[0,n] =
{(j, Sj) : 0 ≤ j ≤ n}. Independently of X1, . . . , Xn, let Ln,1, Ln,2, . . . , Ln,Kn

be a sequence of random variables distributed like the lengths of cycles of a
random permutation of [n] arranged in non-increasing order. Conditionally
given {Kn = k} and {Ln,i = ni : 1 ≤ i ≤ k}, let B be the random subset of
defined by the following relation. σ is in B if and only if σ ∈ Σ(n1,...,nk) and
there exists τ ∈ Σk such that the function defined on [k] by

i 7→ ∆σ,τ
n,i :=

1
nτ(i)

 nτ(1)+···+nτ(i)∑
`=nτ(1)+···+nτ(i−1)+1

Xσ(`)

 (2)

is non-increasing in i and for each 1 ≤ i ≤ k we have

1
m

 nτ(1)+···+nτ(i−1)+m∑
`=nτ(1)+···+nτ(i−1)+1

Xσ(`)

 ≤ ∆σ,τ
n,i for 1 ≤ m ≤ nτ(i). (3)

Conditionally given B, let ρ be a uniform random element of B, indepen-
dently of all previously introduced random variables. For 1 ≤ j ≤ n let
Sρ

j =
∑j

`=1 Xρ(`) and let S
[0,n]
ρ = {(j, Sρ

j ) : 0 ≤ j ≤ n}. Then S
[0,n]
ρ

d= S[0,n].

The condition involving (2) ensures that the permutation that we end
up choosing puts the blocks of increments in non-increasing order arithmetic
mean, i.e. in non-increasing order of slope, and the condition involving (3)
ensure that the cyclic permutation chosen for each block makes the walk
stay below the line joining the start and end points of the increments of that
block. In the case where X1, . . . , Xn satisfy assumption A, the random set B
almost surely only consists of one element and thus the additional random
variable ρ is not needed.

Some of the ideas of our construction are contained within the work of
Spitzer [19], who observed that if ∆n,i is the increment of the walk over the
ith face of the concave majorant, then for the maximum

Mn := max
0≤k≤n

Sk

there is the almost sure representation

Mn =
Fn∑
i=1

∆n,i1(∆n,i ≥ 0). (4)
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Spitzer showed the much simpler representation in distribution

Mn
d=

Kn∑
i=1

∆∗
n,i1(∆∗

n,i ≥ 0) (5)

where Kn is the number of cycles of a random permutation independent of
the random walk S[0,n] = {(j, Sj) : 0 ≤ j ≤ n}, and given Kn = k and
that the permutation has cycles of lengths say Ln,1, . . . , Ln,k, the ∆∗

n,i are
conditionally independent, with

(∆∗
n,i |Kn = k, Ln,i = `) d= S`, for 1 ≤ i ≤ k, and 1 ≤ ` ≤ n.

This is an immediate corollary of our theorem, and something we investigate
further in Section 5.3. Some consequences of this result lead to other ideas
which arise in this paper. Let S+

` = S`∨0. As pointed out by Spitzer, Hunt’s
remarkable identity [13, Theorem 4.1]

E(Mn) =
n∑

`=1

E(S+
` )

`
(6)

follows easily from (5), along with the following complete description of the
distribution of Mn for every n = 1, 2, . . . (this description is known as Spit-
zer’s Identity) : for |q| < 1

∞∑
n=0

qnEeitMn = exp

( ∞∑
k=1

qk

k
EeitS+

k

)
(7)

To indicate how (6) follows from (5), recall that the expected number cycles
of length ` in a random permutation of [n] is `−1. So (6) decomposes the ex-
pectation of the sum in (5) according the contributions from cycles of various
sizes `. To provide a similar interpretation of (7), let n(q) denote a random va-
riable with geometric distribution with parameter 1−q, so P(n(q) ≥ n) = qn

for n = 0, 1, . . ., and assume n(q) is independent of the random walk. Then
multiplying (7) by 1− q and using the expansion − log(1− q) =

∑∞
k=1 qk/k

allows (7) to be rewritten [11] :

EeitMn(q) = exp

( ∞∑
k=1

qk

k
(EeitS+

k − 1)

)
(8)

Otherwise put, the maximum Mn(q) of the walk up to the independent geo-
metric time n(q) has a compound Poisson distribution :

Mn(q)
d=

∞∑
k=1

N(qk/k)∑
i=1

S+
k,i (9)
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where for fixed q the N(qk/k) are independent Poisson variables with pa-
rameters qk/k for k = 1, 2, . . ., and given these variables the Sk,i for 1 ≤
i ≤ N(qk/k) are independent with Sk,i

d= Sk. As observed by Greenwood
and Pitman [11], the identity in distribution (9), and the companion result
which determines the common distribution of Sn−Mn and min0≤k≤n Sk for
every n, can be derived, along with other results of fluctuation theory for
the distribution of ladder heights and ladder times, from the decomposition

Sn(q) = Mn(q) + (Sn(q) −Mn(q)) (10)

which expresses the compound Poison variable Sn(q) as the sum of two inde-
pendent compound Poison variables with with positive and negative ranges
respectively. Moreover, as shown in [10], this discussion can be passed to a
continuous time limit to derive the companion circle of fluctuation identities
for maxima, minima and ladder processes associated with Lévy processes. In
section 5.3 we give new explanations for the compound Poisson distributions
mentioned above.

The rest of this article is structured as follows. In Section 2 we will prove
Theorem 1 under assumption A and give corollaries relating to the parti-
tion and composition induced by the concave majorant. In Section 3 we will
analyze some specific examples of composition probabilities, including the
Cauchy increment case, which turns out to be particularly simple. In Sec-
tion 4 we extend the description to the case where n is replaced by n(q), a
geometric random variable with parameter 1− q, which results in a descrip-
tion of the concave majorant and the excursions under each face as a Poisson
point process. In Section 5 we apply the Poissonian theory. First, by letting
q → 1 we find a description of the concave majorant for the random walk
on [0,∞), and the associated excursions under each face. Then we analyze
the behaviour of the concave majorant as n grows. as a final application
we investigate the pre and post maximum parts of the walk. In Section 5.3
we investigate the two concave majorants that result from decomposing the
random walk at its maximum, and their associated partitions. In Section 6
we extend the theory to X1, . . . , Xn not satisfying assumption A. Also in
Section 6 we investigate three nested compositions of integers that arise na-
turally. At the end of this Section 6 some examples of how the general theory
can be applied are given. In Section 7 we finish answering the rearrangement
problem mentioned above by describing the law of a random walk conditio-
nal on the value of its concave majorant. Finally, in Section 8, we describe
an important path transformation that provides Pitman and Uribe Bravo
with the basis for a full investigation into the concave majorant of a Lévy
process [15].

6



2 Proof of Theorem 1 under assumption A and the
partition and composition laws

We begin with a simple Lemma due to Spitzer relating to cyclic per-
mutations of increments of walks that shows that under assumption A the
appropriate cyclic permutations discussed in the introduction are almost sur-
ely unique.

Lemma 2. [19, Theorem 2.1] Let x = (x1, . . . , xn) be a vector such that no
two subsets of the coordinates have the same arithmetic mean. For 1 ≤ k ≤ n
let xk+n = xk, and let x(k) = (xk, xk+1, . . . , xk+n). Then there is a unique
1 ≤ k∗ ≤ n such that the walk with increments x(k∗) = (xk∗ , xk∗+1, . . . , xk∗+n)
lies below the chord joining its start and end points.

Proof. (Theorem 1 under assumption A) By conditioning on the set of
values that X1, . . . , Xn take it is enough to show that S

[0,n]
ρ

d= S[0,n] in the
case where X1, . . . , Xn are samples without replacement from n real numbers
x1, . . . , xn such that no two subsets of x1, . . . , xn have the same arithmetic
mean. Thus it is enough to show that for every permutation σ ∈ Σn we have

P(Xρ(1) = xσ(1), . . . , Xρ(n) = xσ(n)) =
1
n!

and without loss of generality it is enough to show this for σ the identity
permutation. Suppose the concave majorant of the deterministic walk with
increments (x1, . . . , xn) has k faces whose lengths in order of appearance are
(m1, . . . ,mk), so that the composition induced by the lengths of the faces of
the concave majorant is (m1, . . . ,mk). Let τ ∈ Σk be such that

(n1, . . . , nk) := (mτ(1), . . . ,mτ(k))

are the lengths of the k faces in non-increasing order, so that the partition
induced by the lengths of the faces of the concave majorant is (n1, . . . , nk).

First suppose that each element of (n1, . . . , nk) is distinct. Then the event
{Xρ(`) = x` : 1 ≤ ` ≤ n} occurs if and only if

(i) the partition chosen according to the lengths of the cycles of a random
permutation is (n1, . . . , nk) ;

(ii) for each 1 ≤ i ≤ k, the ordered list (Xn1+···+ni−1+1, . . . , Xn1+···+ni) is
one of the ni cyclic permutations of the ordered list
(xm1+m2+···+mτ(i)−1+1, . . . , xm1+m2+···+mτ(i)

).
According to the Ewens Sampling Formula, the event in (i) has probabi-
lity

∏k
i=1

1
ni

. The event in (ii) is independent of the event in (i), and has
probability 1

n!

∏k
i=1 ni.

Now suppose that the elements of (n1, . . . , nk) are not distinct. For 1 ≤
j ≤ n let Ij = {i : ni = j} and let aj = |Ij |. The event {Xρ(`) = x` : 1 ≤
` ≤ n} occurs if and only if
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(i) the partition chosen according to the lengths of the cycles of a random
permutation is (n1, . . . , nk) ;

(ii) for each 1 ≤ j ≤ n, for each i ∈ Ij the ordered list (Xn1+···+ni−1+1, . . . , Xn1+···+ni)
is one of the ni = j cyclic permutations of the ordered list
(xm1+m2+···+mτ(i′)−1+1, . . . , xm1+m2+···+mτ(i′)) for some i′ ∈ Ij .

By the Ewens Sampling Formula, the event in (i) has probability
(∏k

i=1
1
ni

)(∏n
j=1

1
aj !

)
.

The event in (ii) is independent of the event in (i), and has probability
1
n!

(∏k
i=1 ni

)(∏n
j=1 aj !

)
. Hence P(Xρ(`) = x` : 1 ≤ ` ≤ n) = 1

n! . �

As a direct consequence of Theorem 1 we have the result of Goldie [9]
mentioned in the introduction.

Corollary 3. Let Mn,1, . . . ,Mn,Fn be the lengths of the faces of the concave
majorant of S[0,n] arranged in non-increasing order. Then under assumption
Athe joint distribution of Mn,1, . . . ,Mn,Fn is given by the formula

P(Fn = k,Mn,i = ni, 1 ≤ i ≤ k) =
n∏

j=1

1
jajaj !

for all (n1, . . . , nk) ∈ Pn, where aj = #{i : 1 ≤ i ≤ k, ni = j} for 1 ≤ j ≤ n.
I.e. The partition of n induced by the lengths of the faces of the concave
majorant of S[0,n] has the law of a partition of n induced by the cycle lengths
of a random permutation.

Proof. Following the construction in Theorem 1, the lengths Ln,1, . . . , Ln,Kn

are exactly the lengths of the faces of the concave majorant of S
[0,n]
ρ , and the

conclusion follows since S[0,n] d= S
[0,n]
ρ . �

Further, Theorem 1 allows us to describe the law of the composition
induced by the lengths of the faces of the concave majorant.

Corollary 4. Let (Nn,1, . . . , Nn,Fn) be the composition of n induced by the
lengths of the faces of the concave majorant of S[0,n]. Then under assumption
Athe joint distribution of Nn,1, . . . , Nn,Fn is given by the formula

P(Fn = k, Nn,i = ni, 1 ≤ i ≤ k) = P

(
S

(1)
n1

n1
>

S
(2)
n2

n2
> · · · > S

(k)
nk

nk

)
k∏

i=1

1
ni

for all compositions (n1, . . . , nk) of [n] into k parts, where for 1 ≤ i ≤ k

S(i)
ni

:= Sn1+···+ni − Sn1+···+ni−1

d= Sni

In particular, if the Xi are independent, then so are the S
(i)
nj for 1 ≤ i ≤ k.
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Proof. Fix a composition (n1, . . . , nk) and let (−→n τ(1), . . . ,
−→n τ(k)) be (n1, . . . , nk)

in non-increasing order. Let T be the set of τ ∈ Σk such that (−→n τ(1), . . . ,
−→n τ(k)) =

(n1, . . . , nk). Then |T | =
∏n

j=1 aj , where aj = #{i : 1 ≤ i ≤ k, ni = j}
for 1 ≤ j ≤ n. We are interested in comparing the slopes of the faces of the
concave majorant that result from the construction in Theorem 1. In this
direction, for 1 ≤ i ≤ k let

S
(τ(i))
−→n τ(i)

= S−→n 1+···+−→n τ(i)
− S−→n 1+···+−→n τ(i)−1

d= S−→n τ(i)
= Sni

Under the construction in Theorem 1, the events {Fn = k} and {Nn,i = ni :
1 ≤ i ≤ k} occur if and only if

(i) (Ln,1, . . . , Ln,Kn) = (−→n 1, . . . ,
−→n k) ;

(ii)
S

(τ(1))
−→n τ(1)

n1
>

S
(τ(2))
−→n τ(2)

n2
> · · · >

S
(τ(k))
−→n τ(k)

nk
for some τ ∈ T .

As before, the event in (i) has probability
(∏k

i=1
1
ni

)(∏n
j=1

1
aj !

)
. The event

in (ii) is independent of the event in (i), and by exchangeability the proba-
bility that it occurs for one particular element of T is

P

(
S

(1)
n1

n1
>

S
(2)
n2

n2
> · · · > S

(k)
nk

nk

)

Recalling that |T | =
∏n

j=1 aj completes the proof. �

3 Examples of composition probabilities

The special case of Cauchy increments gives rise to the following appea-
ling version of Corollary 4.

Corollary 5. Suppose that the Xi are independent and such that Sk/k has
the same distribution for every k, as when the Xi have a Cauchy distribution.
Then

P(Fn = k;Nn,i = ni, 1 ≤ i ≤ k) =
1
k!

k∏
i=1

1
ni

and hence {Nn,i : 1 ≤ i ≤ Fn} has the same distribution as the composition
of n created by first choosing a random permutation of n and then putting
the cycle lengths in uniform random order.

Proof. Since S
(1)
n1
n1

, . . . ,
S

(k)
nk
nk

is an i.i.d. sequence each of the k! orderings is

equally likely, and hence P(S
(1)
n1
n1

> · · · > S
(k)
nk
nk

) = 1
k! . �

Note that the continuum limit of this result can be read from Bertoin’s
work [4]. The above result shows that the Cauchy discrete model is the same
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as that derived by random sampling from the continuum Cauchy model, as
per Gnedin’s theory of sampling consistent compositions of positive integers
[8]. That is, let U1, . . . , Un be independent identically distributed uniform
random variables on [0, 1] and let X be a Cauchy process on [0, 1]. Generate
a composition of n by putting i in the same block as j if and only if Ui

and Uj fall in the same segment of the composition of [0, 1] induced by the
lengths of the faces of the concave majorant of X, and then ordering blocks
according to the ordering of the faces of the concave majorant of X. Then
the composition of n that is generated will have the same distribution as
(Nn,1, . . . , Nn,Fn) in Corollary 5. This does not seem at all obvious a priori,
and according to simulation is not true in the Brownian case, suggesting that
it is not true in general.

Now let X1, . . . , Xn be any exchangeable sequence of random variables
satisfying assumption A, as in Corollary 4. We now give some numerical
examples of composition probabilities when n is small. Let

p(n1, . . . , nk) := P(Fn = k, Nn,i = ni, 1 ≤ i ≤ k)

Using symmetry and the partition probabilities given in Corollary 3, univer-
sal values are

p(1, 1) = 1/2, p(2) = 1/2

p(3) = 1/3, p(2, 1) = p(1, 2) = 1/4, p(1, 1, 1) = 1/6

p(4) = 1/4, p(1, 3) = p(3, 1) = 1/6, p(2, 2) = 1/8, p(1, 1, 1, 1) = 1/24

As n increases, the first values that depend on the particular choice of incre-
ment distributions are

p(1, 1, 2) = p(2, 1, 1) =
1
2

P(X1 > X2 > 1
2(X3 + X4))

p(1, 2, 1) =
1
2

P(X1 > 1
2(X2 + X3) > X4)

where according to the partition probabilities we must have

p(1, 1, 2) + p(2, 1, 1) + p(1, 2, 1) = 1/4

We consider two special cases - independent Cauchy increments and inde-
pendent Gaussian increments. When the increments are independent and
Cauchy, the 3 probabilities above are equal, with

2p(1, 2, 1) = P(X1 > 1
2(X2 + X3) > X4) = 1/6 = 0.1666666...

Note that

P(X1 > 1
2(X2+X3) > X4) = P(1

2(X2+X3)−X1 < 0 and X4−1
2(X2+X3) < 0).
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In the centered Gaussian case with V ar(X1) = 1 this is the probability of
the negative quadrant for a centered bivariate normal with equal variances
3/2 and covariance −1/2 and thus correlation ρ = −1/3. That probability
is given by

1
4

+
arcsin(−1/3)

2π
= 0.195913276

The difference with the Cauchy case is quite small. The fact that it is larger
is consistent with the known differences in behaviour of the limit partitions
for large n after scaling ; it is known that the concave majorant of Brow-
nian motion is more likely to have longer faces in its central region than the
concave majorant of a Cauchy process. We conclude this section by conjec-
turing that p(1, 2, 1) is a monotonic function of the stability index α for
symmetric stable laws.

4 A Poisson point process description

The concave majorant of S[0,n] can be viewed as a random point process
on {1, . . . , n} ×R, where a point at (j, s) means that one of the faces of the
concave majorant has length j and increment s. Let An(j) be the number of
faces of the concave majorant of S[0,n] that have length j for 1 ≤ j ≤ n, and
let Σ(1)

j , . . . ,Σ(An(j))
j be the increments of the faces with length j in uniform

random order. Thus if X1, . . . , Xn are independent then for each 1 ≤ j ≤ n,
conditionally given An(j) = aj , Σ(`)

j is an independent copy of Sj for each
1 ≤ ` ≤ aj . Figure 1 shows an example of such a point process. To construct
the concave majorant from this point process the faces with lengths and
increments indicated by the points are arranged in decreasing order of slope.

Now suppose we have an infinite sequence of exchangeable random va-
riables X1, X2, . . ., such that almost surely no two subsets have the same
arithmetic mean. As before let S0 = 0 and Sj =

∑j
i=1 Xi for j ≥ 1. Fol-

lowing ideas from the fluctuation theory of Greenwood and Pitman [11] we
now randomise the length of the walk by setting the number of steps of the
random walk equal to n(q), where n(q) is a geometric random variable with
parameter 1− q, so that

P(n(q) ≥ n) = qn for n = 0, 1, 2, . . .

Let S[0,n(q)] = {(j, Sj) : 0 ≤ j ≤ n(q)}, and let

0 < Nn(q),1 < Nn(q),1 + Nn(q),2 < · · · < Nn(q),1 + · · ·+ Nn(q),Fn(q)
= n(q)

be the successive times that S[0,n(q)] meets its concave majorant, where Fn(q)

is the number of faces of the concave majorant of S[0,n(q)]. The following
Lemma, which involves a fundamental Poisson representation of the geome-
tric distribution, is due to Shepp and Lloyd [17], who were just working with
partitions generated by random permutations, not concave majorants.

11



1 2 3 Length

Increment

0

Σ(1)
1

Σ(2)
1

Σ(2)
2

Σ(1)
2

Σ(1)
3

Fig. 1: An example point process and the resulting concave majorant. The
dashed lines show the slope of each face, and these faces are arranged in
decreasing order of slope.

Lemma 6. Let Aj = #{i : 1 ≤ i ≤ Fn(q), Nn(q),i = j} for j ≥ 1. Then Aj

has the Poisson distribution with mean qj/j, independently for each j ≥ 1.

Proof. Noting that log(1− q) = −
∑

j qj/j, we have that

P(Aj = aj , j ≥ 1) = P(n(q) =
∑

j≥1jaj)P(Aj = aj , j ≥ 1|n(q) =
∑

j≥1jaj)

= (1− q)q
∑

j jaj
1∏

j jajaj !

=
∏
j

(
qj

j

)aj

e
− qj

j

aj !

where the second equality comes from Corollary 3. �

For the next theorem, and in fact the rest of this section, it is impor-
tant that we assume X1, X2, . . . are independent with common continuous
distribution. The theorem asserts that the point process discussed above is
a Poisson point process under this assumption.

Theorem 7. If X1, X2, . . . are independent with common continuous distri-
bution, then the point process of lengths and increments of faces the concave
majorant of S[0,n(q)] is a Poisson point process on {1, 2, . . .}×R with intensity
j−1qjP(Sj ∈ dx) for j = 1, 2, . . ., x ∈ R. Moreover, let Ti =

∑i
l=1 Nn(q),l,

0 ≤ i ≤ Fn(q), be the consecutive times at which S[0,n(q)] meets its concave
majorant, so that T0 = 0 and TFn(q)

= n(q). Then the sequence of path
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segments

{(STi+k − STi , 0 ≤ k ≤ Nn(q),i), i = 0, . . . , Fn(q) − 1},

is a list of the points of a Poisson point process in the space of finite random
walk segments

{(s1, . . . , sj) for some j = 1, 2, . . .}
whose intensity measure on paths of length j is qjj−1 times the conditional
distribution of (S1, . . . , Sj) given that Sk < (k/j)Sj for all 1 ≤ k ≤ j − 1.

Proof. Conditionally given Aj = aj the increment for each face of length j
is an independent copy of Sj by Theorem 1. Combined with Lemma 6 this
proves the first statement.

Conditional on the concave majorant of S[0,n(q)] having a face of length
j and increment s, the increments of S[0,n(q)] over that face of the concave
majorant have the distribution of (X1, . . . , Xj) given that

∑k
`=1 X` < (k/j)s

for all 1 ≤ k ≤ j − 1 and
∑j

`=1 X` = s, and this law is independent for each
face of S[0,n(q)]. This implies the second statement. �

A simple but important corollary of Theorem 7 is the following.

Corollary 8. (n(q), Sn(q)) has a compound Poisson distribution, and the
total number of faces Fn(q) of the concave majorant of S[0,n(q)] has Poisson
distribution with mean

∞∑
j=1

j−1qj = − log(1− q).

5 Applications of the Poissonian description

5.1 The random walk on [0,∞)

By letting q → 1 it is possible to deduce the structure of the concave
majorant of the random walk on [0,∞) using Theorem 7. Groeneboom [12]
gave a Poissonian description of the concave majorant of BM on [0,∞) ; that
there is a closely parallel description for random walks does not seem to have
been pointed out before. The case of Lévy processes will be covered in the
forthcoming paper by Pitman and Uribe Bravo [15].

Suppose E(X1) = µ ∈ [−∞,∞). Informally, as q → 1 the intensity mea-
sure of the Poisson point process of face lengths and increments approaches
j−1P(Sj ∈ dx), but since the slope of the concave majorant converges down-
wards to µ but does not reach it, only the faces with slope greater than µ
will contribute to the concave majorant in the limit. Therefore by Poisson
thinning we get a new intensity measure j−1P(Sj ∈ dx)1(x > jµ). Moreo-
ver, we can also describe path segments of the walk below each face of the
concave majorant as a Poisson point process.

13



Theorem 9. Let S0 = 0 and Sj =
∑j

i=1 Xi for j ≥ 1, where X1, X2, . . . are
independent random variables with common continuous distribution that has
a well defined mean µ := E(X1) ∈ [−∞,∞). Let S[0,∞) = {(j, Sj) : j ≥ 0}.
Let 0 = T0 < T1 < T2 < · · · be the successive times that S[0,∞) meets its
concave majorant, and let Ni = Ti − Ti−1 for i ≥ 1. Then the sequence of
path segments

{(STi+k − STi , 0 ≤ k ≤ Ni), i = 0, 2, . . .}

is a list of the points of a Poisson point process in the space of finite random
walk segments

{(s1, . . . , sj) for some j = 1, 2, . . .}

whose intensity measure on paths of length j is j−1 times the restriction
to Sj ∈ (jµ,∞) of the conditional distribution of (S1, . . . , Sj) given that
Sk < (k/j)Sj for all 1 ≤ k < j.

Proof. The combination of the following four facts is enough to prove the
theorem :

(i) the number of faces of length j has a Poisson distribution with mean
j−1P(Sj > jµ) ;

(ii) these numbers are independent as j varies ;
(iii) given all of these numbers, and with n faces of length j, the n walks

on the associated faces, when listed in a uniform random order inde-
pendently of the walks on the faces, are n independent processes each
distributed according to (S1, . . . , Sj) given that Sk < (k/j)Sj for all
1 ≤ k < j and Sj > jµ.

(iv) given n faces of length j, the increments of these faces, when listed in
uniform random order, are distributed like n independent copies of Sj

given Sj > jµ.
The main thing to check is that (i) and (ii) are true, i.e. that the counts

A∞(j) := #{j : Ni = j}

are independent Poisson variables with mean j−1P(Sj ≥ jµ). Once we have
shown this, (iii) and (iv) follow from Poisson thinning and previous discus-
sions relating to the independence of the walks below each segment.

Let n(q) be a geometric random variable with parameter 1 − q. Let
S[0,n(q)] = {(j, Sj) : 0 ≤ j ≤ n(q)}, so that the concave majorant of S[0,n(q)]

and S[0,∞) agree up until some random time T ∗n(q).

Lemma 10. T ∗n(q) is the maximal Ti with Ti ≤ n(q).

Proof. To see this, let i be such that Ti ≤ n(q). Since the concave majorant
of S[0,n(q)] is everywhere less than the concave majorant of S[0,∞), if they did
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not agree at time Ti then the concave majorant of S[0,n(q)) would go beneath
the point (Ti, STi), but this is a contradiction since (Ti, STi) is in S[0,n(q)]. �

Let
An(q)(j) := #{i : Nn(q),i = j}

where Nn(q),1, . . . , Nn(q),Fn(q)
are the lengths of faces of the concave majorant

of S[0,n(q)]. There are the obvious decompositions

A∞(j) = A∞(j)(0, T ∗n(q)] + A∞(j)(T ∗n(q),∞] (11)
An(q)(j) = An(q)(j)(0, T ∗n(q)] + An(q)(j)(T

∗
n(q),∞] (12)

where e.g. A∞(j)(0, T ∗n(q)] is the number of faces of the concave majorant of
S[0,∞) of length j up to and including the face ending at time T ∗n(q), and the
other terms are defined similarly. Moreover, since T ∗n(q) is by definition the
maximal common vertex of the concave majorants of S[0,n(q)] and S[0,∞), it
is clear that

A∞(j)(0, T ∗n(q)] = An(q)(j)(0, T ∗n(q)]
= #{i : Nn(q),i = j, STi − STi−1 > jαn(q)} (13)

where αn(q) is the right derivative of the concave majorant of S[0,∞) at time
T ∗n(q). Conditionally given αn(q), by Poisson thinning and Theorem 7 the dis-
tribution of the right hand side of (13) is Poisson with mean qjj−1P(Sj >
jαn(q)), independently for each j. The strategy at this point is to let q → 1,
so that Tn(q) →∞ and αn(q) → µ, resulting in A∞(j) having Poisson distri-
bution with mean j−1P(Sj > jµ), independently for each j, i.e. resulting in
(i) and (ii).

Let {qm}m≥1 be any sequence such that if {n(qm)}m≥1 is a sequence
of independent geometric random variables with parameters 1 − qm then
n(qm) →∞ almost surely as m →∞ (so that necessarily qm → 1). Suppose
that T(n(qm)) →∞ and αn(qm) → µ almost surely, so that

A∞(j) = lim
m→∞

A∞(j)(0, T(n(qm))]

= lim
m→∞

#{i : Nn(qm),i = j, STi − STi−1 > jαn(qm)} (14)

(15)

where the first equality is from (11) and the second is from (13). Since
αn(qm) → µ almost surely, by continuity of the function x 7→ P(Sj > jx)
the distribution of the right hand side of (14) is Poisson with parameter
j−1P(Sj > jµ), independently for each j. This proves (i) and (ii).

It remains to prove that T(n(qm)) →∞ and αn(qm) → µ almost surely as
m →∞. For every i ≥ 1, since Ti < ∞ we will have n(qm) > Ti eventually,
and hence by Lemma 10 for every i ≥ 1 we will have T(n(qm)) ≥ Ti eventually.
Since Ti →∞ this implies that T(n(qm)) →∞ almost surely.
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Lemma 11. Almost surely no face of the concave majorant of S[0,∞) can
have slope less than µ.

Proof. If µ = −∞ then the conclusion is clear. Suppose µ ∈ (−∞,∞), then
since Sn−nµ is a mean zero random walk and hence recurrent, for every i ≥ 1
there will almost surely be some ni > Ti such that Sni > STi + (ni − Ti)µ,
and hence for any vertex of the concave majorant the slope of the face to
the right must be greater than µ. �

Lemma 12. For every ε > 0 there will almost surely be a face of the concave
majorant with slope x such that µ < x < µ + ε.

Proof. For any µ ∈ [−∞,∞) by the strong law of large numbers Sn/n → µ
almost surely as n →∞. But if there was no slope of the concave majorant
on [0,∞) with slope x < µ + ε then we would have lim supn Sn/n > µ.
Combined with Lemma 11 this gives the conclusion. � We already have

that T(n(qm)) → ∞ almost surely. Since αn(qm) is the right derivative of the
concave majorant of S[0,∞) at T(n(qm)), Lemma 12 implies that αn(qm) → µ
almost surely as m →∞. �

5.2 The structure of the concave majorant of S[0,n] as n varies

Theorem 1 relates to the structure of the concave majorant of a random
walk of fixed length, and the Theorems 7 and 9 allow randomized lengths
or infinite length. So far though, we have not discussed how the structure
changes as the number of steps of the walk increases, but theorem 9 and its
proof now allow us to make some comments. Recall that Fn is the number of
faces of the concave majorant of S[0,n] = {(j, Sj) : 0 ≤ j ≤ n)}, and in the
case where X1, . . . , Xn are independent with common continuous distribution
we know from (1) that for each fixed n there is the equality in distribution

Fn
d= Kn :=

n∑
j=1

Ij

where the Ij are independent Bernoulli variables with P(Ij = 1) = 1/j.
However, as observed by Steele [20] the identity in law between Fn and Kn

does not hold jointly as n varies, and as pointed out by Qiao and Steele [16]
the asymptotic behaviour of Fn and Kn as n → ∞ may be quite different.
They provide an example of a continuous distribution of Xi such that for
each m = 1, 2, . . .

P(Fn = m infinitely often ) = 1

It is an easy consequence of theorem 9 that

P(Fn = 1 infinitely often ) = 1
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if and only if E(X+) = ∞. It appears that the Poisson analysis of Fn(q) can
be used to provide a more thorough description of the possible asymptotic
behaviours of Fn as n varies. In particular, as a consequence of Lemma
10, if E(X+) < ∞ then Fn is bounded below by the number of faces of the
majorant on [0, n] which are part of the majorant on [0,∞), and this number
is increasing in n, with limit ∞.

5.3 Decomposition at the maximum

Theorem 7 provides tools for analyzing the behaviour of the random walk
S[0,n(q)] before and after the time it achieves its maximum. By conditioning
on n(q) = n, we can then do the same for S[0,n]. The key idea is that by
taking the faces of the concave majorant that have positive slope we get only
those faces that lie in the region up to where the random walk achieves its
maximum, and by taking the faces with negative slope we get only those
faces that lie in the region after the time when the random walk achieves
its maximum. This approach was used by Spitzer to find identities involving
the maximum of a random walk [19], as indicated in Section 1.

Let X1, X2, . . . be a sequence of independent random variables with com-
mon continuous distribution, and let S0 = 0 and Sj =

∑j
i=1 Xi for j ≥ 1. Let

S[0,n] = {(j, Sj) : 0 ≤ j ≤ n} and S[0,n(q)] = {(j, Sj) : 0 ≤ j ≤ n(q)}. Let
Ln be the almost surely unique time at which S[0,n] achieves its maximum,
and let the value of the maximum be Mn. Let Fn denote the number of faces
of the concave majorant of the walk S[0,n], with the convention F0 = 0, and
let (Nn,i,∆n,i) denote the length and increment associated with the ith of
these faces. We make similar definitions when n is randomized to n(q).

Theorem 13. (Ln(q),Mn(q)) and (n(q)−Ln(q), Sn(q)−Mn(q)) are independent
and both have compound Poisson distributions.

As discussed in Section 1 the compound Poisson nature of Mn(q) and
Sn(q) − Mn(q) and their independence was discovered by Greenwood and
Pitman [11], but this section gives a more explicit explanation of their dis-
tribution.

Proof. By construction

∆n,i = SNn,1+···Nn,i−1+Nn,i − SNn,1+···Nn,i−1

and
(Ln,Mn) =

∑Kn
i=1(Nn,i,∆n,i)1(∆n,i > 0)

(n− Ln, Sn −Mn) =
∑Kn

i=1(Nn,i,∆n,i)1(∆n,i ≤ 0)

From Theorem 7 that the (Nn(q),i,∆n(q),i) are the points of a Poisson point
process on {1, 2 . . .}×R with intensity j−1qjP(Sj ∈ dx), j ∈ {1, 2, . . .}, x ∈ R,
and thus the conclusion follows. �
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By conditioning on the event n(q) = n and Ln(q) = ` we can deduce
results about the concave majorant of S[0,n] either side of its maximum.

Theorem 14. Let X1, . . . , Xn be independent with common continuous dis-
tribution. Let S0 = 0 and Sj =

∑j
i=1 Xi for 1 ≤ j ≤ n, and let S[0,n] =

{(j, Sj) : 0 ≤ j ≤ n}. Suppose that P(Sj > 0) = p+ for 1 ≤ j ≤ n. Then
conditionally given Ln := arg max0≤j≤n Sj = `, the partition generated by
the lengths of the faces of the concave majorant of S[0,n] on the interval [0, `]
is distributed according to the Ewens sampling formula with parameter p+.
That is, if A+

j is the number of faces of the concave majorant with positive
slope of length j, then for any {aj : j ≥ 1} such that

∑
j jaj = ` ≤ n,

P(A+
j = aj , j ≥ 1|Ln = `) =

Γ(p+)`!
Γ(p+ + `)

∏̀
j=1

(p+)aj

jajaj !
(16)

The partition generated by the lengths of the faces of the concave majorant of
S[0,n] on the interval [`, n] is also distributed according to the Ewens sampling
formula but with parameter p− = 1− p+.

Proof. Let A+
n(q),j be the number of faces of the concave majorant of S[0,n(q)]

with positive slope of length j. From the proof of Theorem 13 it is easy to
see that A+

n(q),j has a Poisson distribution with parameter j−1qjp−, indepen-
dently for each j, and independently of S[0,n(q)] after time Ln(q). Thus for
any {aj : j ≥ 1} such that

∑
j jaj = `,

P(A+
j = aj , j ≥ 1|Ln = `) = P(A+

n(q),j = aj , j ≥ 1|Ln(q) = `, n(q) = n)

= P(A+
n(q),j = aj , j ≥ 1|Ln(q) = `)

=
P(A+

n(q),j = aj , j ≥ 1)

P(Ln(q) = `)

=

∏
j

(p+)aj qjaj

jaj aj !
exp{−p+qj

j }
P(Ln(q) = `)

(17)

It is known [7, Chapter XII, (8.12)] that for the random walk S[0,n], the
almost surely unique index Ln such that SLn = max0≤j≤n Sj has the beta-
binomial distribution

P(Ln = `) = (−1)n

(
p− − 1

`

)(
p+ − 1
n− `

)
(0 ≤ ` ≤ n)

which is the mixture of binomial(n, p) distributions for p with beta(p+, p−)
distribution on [0, 1]. Thus

P(Ln(q) = `) =
Γ(p+ + `)q`(1− q)p+

Γ(p+)`!

Thus (17) reduces to (16). The partition after the maximum is proved simi-
larly. �
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6 The general case

Let Sj =
∑j

i=1 Xi for 1 ≤ j ≤ n, where X1, X2, . . . is a sequence of
exchangeable random variables. Let S[0,n] = {(j, Sj) : 1 ≤ j ≤ n}, and let
C̄ [0,n] be the concave majorant of S[0,n]. The concave majorant in this case,
where there may some subsets of X1, . . . , Xn that have the same arithmetic
mean, is less well studied. However, the literature does contain some results
for the case where X1, X2, . . . are also assumed to be independent.

Sparre Andersen [1] introduced the random variable Hn, the number of
1 ≤ j ≤ n such that Sj = C̄ [0,n](j), and Fn, the number of faces of the
concave majorant, i.e. the number of distinct slopes in the concave majorant
(note that Andersen uses Kn instead of Fn, but we will always use Kn to
represent the number of cycles in a random permutation of [n]). Figure 2
shows an example of a random walk with Fn = 3 and Hn = 8. Clearly,
Fn ≤ Hn, and in the case of continuous distributions we have Fn = Hn

almost surely. Sparre Andersen derived the generating function

H(s, t) :=
∞∑

n=0

n∑
m=0

P(Hn = m)sntm (18)

for all distributions of X1. As will be shown in Theorem 19 the theory presen-
ted in this section provides a powerful new method of deriving this formula,
and in addition a formula for a similar generating function involving Fn.

Sherman [18] introduced a further variable Jn relating to the concave ma-
jorant with Hn ≤ Jn ≤ Fn. Sherman deduces a Spitzer identity which relates
the generating functions of Jn and Φn, the periodicity of (X1, . . . , Xn), that
is, the maximal number φ such that (X1, . . . , Xn) = (X1, . . . , Xn/φ, . . . , X1, . . . , Xn/φ).

In this section it will be important to make a distinction between excur-
sions, segments and faces, and between their associated compositions of n.
The following definitions are illustrated in Figure 2.

– An excursion is a section of a walk between two integer valued times
with the property that the walk touches its concave majorant at the
end points of the excursion but lies strictly below it between the end
points. The number of distinct excursions of S[0,n] is equal to Hn. Let
ΞH

[0,n] be the composition of n induced by the lengths of the excursions

of S
[0,n]
ρ , the transformed walk of Theorem 1. Although this has the

same distribution as the composition induced by the lengths of the
excursions of S[0,n], the forthcoming discussion about segment compo-
sitions only makes sense for S

[0,n]
ρ . We say that the slope of an excursion

is the slope of the line joining its start and end points.
– A segment will always refer to one segment of a partition. That is,

if (n1, . . . , nk) a partition of n then we say it has k segments with
associated lengths n1, . . . , nk. As we described in the introduction, to
generate a walk with the law of S[0,n] whilst simultaneously getting
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Fig. 2: An example of a random walk with non-continuous increment dis-
tribution for n = 15, with Fn = 3 and Hn = 8. The concave majorant is
shown with dashed line. The compositions induced by the excursion lengths
and face lengths are fixed by the values of the walk, and an example of a
possible composition induced by the lengths of the chords associated with
the partition segments is shown. The compositions going from top to bottom
are ΞH

[0,15] = (2, 2, 1, 2, 2, 2, 2, 2, ), ΞK
[0,15] = (2, 3, 4, 4, 2) and ΞF

[0,15] = (5, 4, 6).

information about its concave majorant, i.e. to generate S
[0,n]
ρ , we first

choose a random partition induced by the cycle lengths of a uniform
random permutation. If we are just interested in the concave majorant
of S

[0,n]
ρ , then we only need to associate a slope with each segment of

that partition and then arrange the segments in order of non-increasing
slope, where the ordering of any segments with the same slope is chosen
uniformly randomly. Keeping track of the end points of the segments
results in another induced composition of n, which we call ΞK

[0,n]. This
composition arises from our construction and cannot be read off from
a given random walk.

– A face will mean one face of the concave majorant. The number of dis-
tinct faces is equal to Fn. Let ΞF

[0,n] be the composition of n induced by

the lengths of the faces of S
[0,n]
ρ . Again, this has the same distribution

as the composition of n induced by the lengths of the faces of S[0,n].
– The terms excursion block, segment block and face block will mean

blocks of the compositions ΞH
[0,n], ΞK

[0,n] and ΞF
[0,n] respectively, where

for example the blocks of the composition (3, 4, 1) of 8 in order are
defined to be [0, 3], [3, 7] and [7, 8]. The slope associated with any
block [a, b] is defined by (Sρ

b − Sρ
a)/(b− a).

Since the values of any walk on [0, n] between two vertices of its concave
majorant, i.e. between the start and end points of some face, are composed
of one or many consecutive excursions, ΞH

[n] is some refinement of ΞF
[n], which
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we write as ΞH
[n] � ΞF

[n]. For S
[0,n]
ρ constructed as in Theorem 1, define Hρ

n and

F ρ
n similarly to Hn and Fn, and note that Hn

d= Hρ
n and Fn

d= F ρ
n . Recall

that Kn is the number of segments in the partition chosen at the beginning
of the construction. We will have Hρ

n ≤ Kn ≤ F ρ
n , and moreover ΞK

[0,n] will be
such that ΞH

[0,n] � ΞK
[0,n] � ΞF

[0,n]. We will discuss these nested compositions
further after proving Theorem 1 in the general case.

Proof. (Theorem 1) As in the proof of Theorem 1 under assumption A, it
is enough to show that if X1, . . . , Xn are samples without replacement from
a list x1, . . . , xn of real numbers, where now each number is labelled but no
longer necessarily distinct in value, then

P(Xρ(1) = x1, . . . , Xρ(n) = xn) =
1
n!

Let x = (x1, . . . , xn), and suppose this is fixed throughout the proof of the
theorem. Let c̄[0,n] be the concave majorant of the deterministic walk with
increments x1, . . . , xn. Some notation and a couple of combinatorial lemmas
are needed before continuing.

For any n ∈ N, let Nn be the set of all compositions of n. Let f ∈ N,
h ∈ N and (v1, . . . , vf ) ∈ Nh. Let N(v1,...,vf ),(k1,...,kf ) be the set

{(h1, . . . , h∑f
i=1 ki

) ∈ Nh : (h∑j−1
i=1 ki

, . . . , h∑j
i=1 ki

) ∈ Nvj for 1 ≤ j ≤ f}

Thus an element of N(v1,...,vf ),(k1,...,kf ) is a composition of h formed by joining
together compositions of v1, . . . , vf which contain k1, . . . , kf blocks respecti-
vely (and hence N(v1,...,vf ),(k1,...,kf ) may be an empty set for some values of
(k1, . . . , kf )).

Lemma 15. Let f ∈ N, h ∈ N and (v1, . . . , vf ) ∈ Nh. Then

h∑
k=f

∑
(k1,...,kf )∈Nk

∑
(h1,...,hk)∈N(v1,...,vf ),(k1,...,kf )

k∏
i=1

1
k1! · · · kf !

1
h1 · · ·hk

= 1 (19)

Proof. The numbers that are being summed over bear a strong resem-
blance to the unsigned Stirling numbers of the first kind |S(n, k)|, which
enumerate the number of permutations of n with k cycles. Using this as a
guide, consider a set A consisting of permutations of v1, . . . , vf , where per-
mutations corresponding to vi and vj with i 6= j are considered distinct even
if they are identical. The number of such sets where for each 1 ≤ j ≤ f the
permutation of vj has kj cycles of sizes h∑j−1

i=1 ki
, . . . , h∑j

i=1 ki
is

v1! · · · vf !
k1! · · · kf ! · h1 · · ·hk
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Since the total number of elements of A is v1! · · · vf !, and the summation
in (19) simplifies to be the sum over the subsets of A such that for each
1 ≤ j ≤ f the permutation of vj has kj cycles of sizes h∑j−1

i=1 ki
, . . . , h∑j

i=1 ki
,

the value of the sum must be 1. �

Let f(c̄[0,n]) be the number of faces of c̄[0,n], and let `1(c̄[0,n]), . . . , `f(c̄[0,n])(c̄
[0,n])

be the lengths of those faces, arranged in the order those faces appear in c̄[0,n].
Let N (c̄[0,n]) be the set

{(n1, . . . , nk) ∈ Nn : ∃ k1 < · · · < kf(c̄[0,n]) s.t.
kj∑

i=kj−1

ni = `j(c̄[0,n]), 1 ≤ j ≤ f(c̄[0,n])}

Loosely, N (c̄[0,n]) is the set of possible values for ΞK
[0,n] conditionally given

that the concave majorant of S
[0,n]
ρ is c̄[0,n]. For (n1, . . . , nk) ∈ N (c̄[0,n]), let

{kj(n1, . . . , nk), 1 ≤ j ≤ f(c̄[0,n])} = {(k1, . . . , kf(c̄[0,n])) :
kj∑

i=kj−1

ni = `j(c̄[0,n])}

Then kj(ΞK
[0,n]) represents the number of blocks of Ξ[0,n] that lie in the jth

face block, i.e. in the jth block of ΞF
[0,n]. Finally, let

Nx(c̄[0,n]) = {(n1, . . . , nk) ∈ N (c̄[0,n]) :
ni∑

j=1

xj = c̄[0,n](ni) for 1 ≤ i ≤ k}

Then Nx(c̄[0,n]) is the set of possible values for ΞK
[0,n] conditionally given that

{Xρ(i) = xi : 1 ≤ i ≤ n}.

Lemma 16. For every composition (n1, . . . , nk) ∈ Nx(c̄[0,n]), for 1 ≤ i ≤ k
let

hi(x, n1, . . . , nk) = #{j : n1+· · ·+ni−1 < j ≤ n1+· · ·+ni ,
∑j

l=1 xl = c̄[0,n](j)}

Then

n∑
k=1

∑
(n1,...,nk)∈Nx(c̄[0,n])

(
k∏

i=1

1
hi(x, n1, . . . , nk)

)f(c̄[0,n])∏
j=1

1
kj(n1, . . . , nk)!

 = 1

(20)

Proof. Let h = #{j : 1 ≤ j ≤ n,
∑j

l=1 = c̄[0,n](j)} and for 1 ≤ i ≤ f(c̄[0,n])
let

vi(x) =
#{j : `1(c̄[0,n]) + · · ·+ `i−1(c̄[0,n]) < j ≤ `1(c̄[0,n]) + · · ·+ `i(c̄[0,n]) ,

∑j
l=1 xl = c̄[0,n](j)}
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Associate with each composition (n1, . . . , nk) ∈ Nx(c̄[0,n]) of length k a com-
position of h

(h1(x, n1, . . . , nk), h2(x, n1, . . . , nk), . . . , hk(x, n1, . . . , nk))

so that there is a bijection between the elements of Nx(c̄[0,n]) with k blocks
and the set of compositions (h1, . . . , hk) of h with k blocks that are for-
med by joining together in order compositions of v1, . . . , vf(c̄[0,n]) which have
k1, . . . , kf(c̄[0,n]) blocks respectively. Thus the term on the left hand side of
(20) is

h∑
k=f

∑
(k1,...,k

f(c̄[0,n])
)∈Nk

∑
(h1,...hk)∈N(v1,...,vf ),(k1,...,kf )

k∏
i=1

1
k1! · · · kf !

1
h1 · · ·hk

which by Lemma 15 is 1. �

Fix a composition (n1, . . . , nk) of n. For 1 ≤ j ≤ n let Ij = {i : ni =
j} and let aj = |Ij |. Following the construction of S

[0,n]
ρ described in the

introduction, we see that the event {ΞK
[0,n] = (n1, . . . , nk) and Xρ(`) = x`, 1 ≤

` ≤ n} occurs if and only if
(i) Ln,1, . . . , Ln,Kn is (n1, . . . , nk) in non-increasing order ;
(ii) for each 1 ≤ j ≤ n, for each i ∈ Ij the ordered list (Xn1+···+ni−1+1, . . . , Xn1+···+ni)

is one of the ni = j cyclic permutations of the ordered list
(xm1+m2+···+mτ(i′)−1+1, . . . , xm1+m2+···+mτ(i′)) for some i′ ∈ Ij ;

(iii) for each 1 ≤ j ≤ n, for each i ∈ Ij the cyclic permutation that is chosen
for the ordered list of increments (Xn1+···+ni−1+1, . . . , Xn1+···+ni) is the
unique cyclic permutation that results in the ordered list becoming
exactly (xm1+m2+···+mτ(i′)−1+1, . . . , xm1+m2+···+mτ(i′)) ;

(iv) for each 1 ≤ j ≤ f(c̄)[0,n]) the ordering of the kj(n1, . . . , nk) segments
within the jth face is chosen correctly out of the kj ! possible orderings.

Recall that for 1 ≤ i ≤ k we have

hi(x, n1, . . . , nk) = #{j : n1+· · ·+ni−1 < j ≤ n1+· · ·+ni ,
∑j

l=1 xl = c̄[0,n](j)}

so that in (iii) there are
∏k

i=1 hi(x, n1, . . . , nk) possible choices of combina-
tions of cyclic permutations. Then the probability of the event
{ΞK

[0,n] = (n1, . . . , nk) and Xρ(`) = x`, 1 ≤ ` ≤ n} is n∏
j=1

1
aj !

k∏
i=1

1
ni

 1
n!

k∏
i=1

ni

n∏
j=1

aj !

( k∏
i=1

1
hi(x, n1, . . . , nk)

)f(c̄[0,n])∏
j=1

1
kj(n1, . . . , nk)!


where the first two terms should be familiar from the proof of Theorem 1
under assumption A. Finally, by summing this probability over all possible
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compositions, we have that the probability of the event {Xρ(`) = x`, 1 ≤ ` ≤
n} is

1
n!

n∑
k=1

∑
(n1,...,nk)∈Nx(c̄[0,n])

(
k∏

i=1

1
hi(x, n1, . . . , nk)

)f(c̄[0,n])∏
j=1

1
kj(n1, . . . , nk)!

 =
1
n!

where the equality is by Lemma 16. This completes the proof of Theorem 1.
�

In the case where X1, X2, . . . are independent, the Poisson point process
ideas of Section 4 lead to a simpler description of the concave majorant. For
the rest of this section it is assumed that X1, X2, . . . is a sequence of inde-
pendent and identically distributed random variables and n(q) is a geometric
variable with parameter 1− q. Let S[0,n(q)] = {(j, Sj) : 0 ≤ j ≤ n(q)}, where
S0 = 0 and Sj =

∑j
i=1 Xi for j ≥ 1. Let C̄ [0,n] be the concave majorant

of S[0,n(q)]. The following theorem is the extension to the non-continuous
increment case of Theorem 7.

Theorem 17. If X1, X2, . . . are independent with common distribution and
n(q) a geometric variable with parameter 1 − q, then the lengths and incre-
ments of the faces of the concave majorant of the random walk S[0,n(q)] have
the following law. Let P be a Poisson point process of on {1, 2, . . .}×R with
intensity j−1qjP(Sj ∈ dx) for j = 1, 2, . . ., x ∈ R. Note that this process
may result in multiple points at the same location. Each point of P repre-
sents the length and increment of a chord associated with some segment of a
partition of n(q). Chords with the same slope are joined together in uniform
random order, independently of their lengths, to form the faces of the concave
majorant. Moreover, let Kn(q) be the total number of chords associated with
partition segments and for 1 ≤ i ≤ Kn(q) let Nn(q),i be the length of the ith
of these chords once they have been ordered by decreasing slope and uniform
randomization of ties. Then the sequence of path segments

{(S∑i−1
l=1 Nn(q),l+k − S∑i−1

l=1 Nn(q),l
, 0 ≤ k ≤ Nn(q),i), i = 1, . . . ,Kn(q)}

is a list of the points of a Poisson point process in the space of finite random
walk segments

{(s1, . . . , sj) for some j = 1, 2, . . .}

whose intensity measure on paths of length j is j−1 times the conditional
distribution of (S1, . . . , Sj) given that Sk < (k/j)Sj for all 1 ≤ k < j. Again,
this Poisson point process may result in multiple points at the same location.

Proof. For any n ∈ N, conditionally given n(q) = n, the projection of
the points of P onto {1, . . . , n} has the law of a partition of n generated
by the cycle lengths of a random permutation of [n] by Lemma 6. Hence we
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know from Theorem 1 that for every n ∈ N, conditionally given n(q) = n,
the process described in the theorem gives the correct law for the concave
majorant of S[0,n] and gives the correct law for ΞK

[0,n], the composition induced

by the lengths of the partition segments involved in creating S
[0,n]
ρ . The

remaining assertions follow by independence of the walks associated with
each partition segment. �

We now move towards describing the joint law of the nested compositions
ΞH

[0,n(q)] � ΞK
[0,n(q)] � ΞF

[0,n(q)] in the case where X1, X2, . . . are independent
and the walk has geometric length. The full description of this law will be
given in Theorem 22 at the end of this section, along with some applications
of the theory. Let S

[0,n(q)]
ρ be such that conditionally given n(q) = n, S

[0,n(q)]
ρ

is constructed in the same way as S
[0,n]
ρ in Theorem 1, and let C̄

[0,n(q)]
ρ be the

concave majorant of S
[0,n]
ρ . We begin by describing the laws of Hn(q), Kn(q)

and Fn(q), which are defined to be the number of excursions, segments and
faces respectively of C̄

[0,n(q)]
ρ .

We need some new notation, some of which is taken from Sparre Andersen
[1]. Let x1, x2, . . . be an enumeration of the set of real numbers x for which
P(Sk = kx) is positive for some k > 0, and let

µj(q) =
∞∑

k=1

k−1qkP(Sk = kxj), for j = 1, 2, . . .

µ0(q) =
∞∑

k=1

k−1qkP(Sk 6= kxj for j = 1, 2, . . .)

= − log(1− q)−
∞∑

j=1

µj(q)

Proposition 18. Let Hq,j, Kq,j and Fq,j be the number of excursion, seg-
ments and faces in C̄

[0,n(q)]
ρ of slope xj for j ≥ 1. Then for each j ≥ 1

(i) Hq,j is a geometric random variable with parameter exp(−µj(q)), in-
dependently of {Hq,i : i 6= j}.

(ii) Kq,j is a Poisson random variable with parameter µj(q), independently
of {Kq,i : i 6= j}.

(iii) Fq,j is a Bernoulli random variable with parameter 1 − exp(−µj(q)),
independently of {Fq,i : i 6= j}.

Let Hq,0, Kq,0 and Fq,0 be the number of excursion, segments and faces with
slope not equal to xj for any j ≥ 1. Then
(iv) Hq,0 = Kq,0 = Fq,0 almost surely and their common distribution is

Poisson with parameter µ0(q), independently of {Hq,j ,Kq,j , Fq,j : j ≥
1}.
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Proof. (ii) follows from Theorem 17, (iii) is implied by (ii) since a face of
slope x exists if and only if there is at least one segment of slope x, and
(iv) is also implied by Theorem 17 since it concerns the restriction of the
Poisson point process to slopes which have zero probability, as in the case of
continuous increment distributions.

Fix j ≥ 1. (ii) implies that P(Hq,j ≥ 1) = P(Kq,j ≥ 1) = 1−exp(−µj(q)).
Given that there at least n excursions of slope xj , by the memoryless property
of the geometric distribution of n(q), the law of the remaining values of the
walk S

[0,n(q)]
ρ is the same as the law of a walk generated by the Poisson process

of path segments in Theorem 17 but thinned to only include segments with
slope x ≥ xj . Thus

P(Hq,j ≥ n + 1|Hq,j ≥ n) = P(Kq,j ≥ 1) = 1− exp(−µj(q))

which proves (i). �

Theorem 19. Let Hn and Fn be the number of excursions and faces for
S[0,n], and let Kn be the number of segments for S

[0,n]
ρ . Then for 0 ≤ s, t ≤ 1,

H(s, t) = etµ0(s)
∞∏

j=1

1
1− t + te−µj(s)

K(s, t) = etµ0(s)
∞∏

j=1

etµj(s) = (1− s)−t

F (s, t) = etµ0(s)
∞∏

j=1

(1− t + teµj(s))

The generating function of GKn(z) =
∑∞

m=1 zmP(Kn = m) is well known
from the equality in (1). H(s, t) is as in (18) and agrees with Sparre Ander-
sen’s formula [1, Theorem 2].

Proof. Recall first that Hρ
n

d= Hn and F ρ
n

d= Fn. Let n(s) be a geometric
random variable with parameter 1 − s and consider the walk of n(s) steps.
We have by definition

Hn(s) = Hs,0 +
∞∑

j=1

Hs,j

Thus the generating function of Hn(s) is the product of the generating func-
tions of Hs,0 and Hs,j , j ≥ 1. These are known from Proposition 18, thus

∞∑
m=0

tmP(Hn(s) = m) = e(t−1)µ0(s)
∞∏

j=1

e−µj(s)

1− t + te−µj(s)

= (1− s)etµ0(s)
∞∏

j=1

1
1− t + te−µj(s)
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We can conclude that

H(s, t) =
∞∑

n=0

n∑
m=0

P(Hn = m)sntm

= (1− s)−1
∞∑

m=0

tm
∞∑

n=m

(1− s)snP(Hn = m)

= (1− s)−1
∞∑

m=0

tmP(Hn(s) = m)

= etµ0(s)
∞∏

j=1

1
1− t + te−µj(s)

The deduction for F (s, t) is similar, and as already mentioned, K(s, t) is well
known. �

In order to fully describe the joint law of the nested compositions, two
more lemmas are necessary. The first contains information about the lengths
of each segment or excursion, and the second describes how many excursion
there are in each segment. We already know from the Poissonian description
of the concave majorant the distribution of the number of segments with
a given slope, and thus we already know the distribution of the number of
segments within each face (see Theorem 22 for the full description).

Lemma 20. Consider the walk of n(q) steps. For j ≥ 1, conditionally gi-
ven Kq,j = kq,j, let LK

q,j,1, . . . , L
K
q,j,kq,j

be the lengths of the kq,j segments of

S
[0,n(q)]
ρ of slope xj. Then LK

q,j,1, . . . , L
K
q,j,kq,j

are independent from each other
and the lengths of all other segments> Moreover they are identically distri-
buted with common probability generating function GLK

q,j
(z) = µj(zq)/µj(q).

For j ≥ 1, conditionally given Hq,j = hq,j, let LH
q,j,1, . . . , L

H
q,j,hq,j

be the

lengths of the hq,j excursions of S
[0,n(q)]
ρ of slope xj. Then LK

q,j,1, . . . , L
K
q,j,hq,j

are independent from each other and the lengths of all other segments. Mo-
reover they are identically distributed with common probability generating
function GLH

q,j
(z) = (1− e−µj(zq))/(1− e−µj(q)).

Furthermore, each excursion in the face of slope xj is independent and
has the law of a random walk with increment distribution X1 conditioned
on making its first return to the line through the origin with slope xj before
n(q), an independent geometric random variable with parameter 1 − q, and
remaining below that line before its first return time – the excursion is taken
to be that walk up to the time of its first return to the line with slope xj.

Proof. By Poisson process properties, each LK
q,j,1, . . . , L

K
q,j,hq,j

are inde-
pendent from each other and the lengths of all other segments. By Poisson
thinning, P(LK

q,j,1 = l) = l−1qlP(Sk = kxj), which gives the claimed genera-
ting function.
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By the memoryless property of the geometric distribution of n(q), each
excursion of slope xj is independent, and is clearly independent from all
excursions of other slopes. This gives the final assertion of the Lemma. By
considering the total lengths of the face with slope xj we see that

Hq,j∑
i=1

LH
q,j,i =

Kq,j∑
i=1

LK
q,j,i

By comparing the generating functions of both sides and using Proposition
18 we can deduce the claimed generating function GLH

q,j
(z). �

Lemma 21. Conditionally given there are kq,j segments of S
[0,n(q)]
ρ of slope

xj, let Eq,j,1, . . . , Eq,j,kq,j
be the number of excursions in each of those kn(q)

segments. Then Eq,j,1, . . . , Eq,j,kq,j
are independent of each other and all other

excursions and are identically distributed. Their common distribution is the
log-series distribution with parameter 1− e−µj(q), that is

P(Eq,j,1 = i) =
(1− e−µj(q))i

iµj(q)
, i = 1, 2, . . .

Proof. By Theorem 17 the values of the walk S
[0,n(q)]
ρ over each segment

are independent, which gives the independence of Eq,j,1, . . . , Eq,j,kq,j
. By the

Independence of the excursions in the face of slope xj and the independence
of the walks over each segment of slope xj , LH

q,j,1, . . . , L
H
q,j,Eq,j

are independent
and identically distributed. By considering the total length of each segment
of slope xj , we have the identity in distribution

LK
q,j,1

d=
Eq,j,1∑
i=1

LH
q,j,1

which after applying generating function analysis reveals that

GEq,j,1(z) :=
∞∑
l=1

ziP(Eq,j,1 = i) =
∞∑
i=1

zi (1− e−µj(q))i

iµj(q)

�

We are now ready to describe the joint law of the three nested composi-
tions ΞH

[0,n(q)] � ΞK
[0,n(q)] � ΞF

[0,n(q)]. The following theorem is a summary of
most of the information from Theorem 17 to Lemma 21.

Theorem 22. Let n(q) be a geometric random variable with parameter 1−q.
Let X1, X2, . . . be independent and identically distributed. Let Sj =

∑j
i=1 Xi
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for j ≥ 1. Let x1, x2, . . . be an enumeration of the set of real numbers x for
which P(Sk = kx) is positive for some k > 0, and for j ≥ 1 let

µj(q) =
∞∑

k=1

k−1qkP(Sk = kxj)

Let S
[0,n(q)]
ρ be such that conditionally given n(q) = n, S

[0,n(q)]
ρ is constructed

in the same way as S
[0,n]
ρ in Theorem 1. Let C̄

[0,n(q)]
ρ be the concave majorant

of S
[0,n(q)]
ρ . Then independently for each j ≥ 1 :
– There is a face of C̄

[0,n(q)]
ρ with slope xj with probability 1− e−µj(q).

– Conditionally given there is a face of slope xj the number of blocks of
ΞK

[0,n] with associated slope xj has the Poisson distribution with para-
meter µj(q), conditionally on the value being at least one.

– Conditionally given there are kq,j blocks of ΞK
[0,n] with associated slope

xj, the number of excursions blocks in each of the kq,j segment blocks
has the log-series distribution with parameter 1−e−µj(q), independently
for each segment.

– The length of each excursion of slope xj is independent of all other
excursions and has distribution with generating function

GLH
q,j

(z) = (1− e−µj(zq))/(1− e−µj(q))

Any face block with associated slope x such that x 6= xj for any j ≥ 1 will
be comprised of exactly one segment block, which will also be comprised of
exactly one excursion block. The lengths and increments of faces with slope x
such that x 6= xj for any j ≥ 1 form a Poisson point process on {1, 2, . . .}×R
with intensity i−1P(Si ∈ ds) for i ≥ 1, s ∈ R, but restricted to the region

{(i, s) ∈ {1, 2, . . .} × R : s 6= ixj for any j ≥ 1}

Three nested compositions with the joint law of ΞH
[0,n(q)], ΞK

[0,n(q)] and ΞF
[0,n(q)]

are created by uniformly randomly ordering the excursions within each seg-
ment, uniformly randomly ordering the segments within each face, arranging
the faces in order of decreasing slope, and then looking at the induced com-
positions of excursion blocks, segment blocks and face blocks.

Theorem 22 implies that the compositions ΞH
[0,n(q)] � ΞK

[0,n(q)] � ΞF
[0,n(q)]

can be generated by nested renewal processes on N that terminate at some
geometric time. There would be three types of renewal epochs. The first
would be when a new face block started, which implies a new segment block
and excursion block would also start. The second would be when only a new
segment block and excursion block started, and the third would be when
only a new excursion block started. Unlike in previous investigations into
nested renewal sequences [3, 6], the distributions of the length until the next
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renewal may change with time, and after a renewal has occurred, the number
of future renewals may depend on how many have already occurred.

Theorem 22 allows us to readily compute the probability of many fluc-
tuation events for S[0,n(q)]. Some examples are

– For each j ≥ 1, the probability that C̄ [0,n(q)] consists of only one face
of slope xj is (1− q)−1e−µj(q).

– The probability that S[0,n(q)] has a unique minimum, i.e. the probabi-
lity that C̄ [0,n(q)] has no face of slope zero, is exp[−

∑∞
k=1 k−1qkP(Sk =

0)].
– For each j ≥ 1, the expected length of the face of C̄ [0,n(q)] of slope xj

is
∑∞

k=1 qkP(Sk = kxj).

7 S [0,n] conditional on its concave majorant

To complete the rearrangement problem stated in the introduction, we
now give a description of the law of S[0,n] conditional on C̄ [0,n] = c̄[0,n]. It is
a generalization of the well known Vervaat transform for turning a bridge of
a random walk into an excursion [21, Theorem 5]. It relies on first choosing
a segment composition ΞK

[0,n] conditional on C̄
[0,n]
ρ = c̄[0,n] and then choosing

a walk conditional on ΞK
[0,n].

Let Supp(C̄ [0,n]) be the support of the measure on concave functions on
[0, n] that represents the law of C̄ [0,n]. For any composition (n1, . . . , nk) of
n we say that σ ∈ Σn is a (n1, . . . , nk)-cyclic permutation of [n] if its only
action is to cyclically permute the first n1 elements of [n], cyclically permute
the next n2 elements of [n] and so on. For example, 234175689 is a (4, 3, 2)-
cyclic permutation of [9]. Recall that in Section 6 we defined Nn to be the
set of compositions of n, and N (c̄[0,n]) ⊆ Nn to be the set of possible values
of ΞK

[0,n] conditionally given C̄
[0,n]
ρ = c̄[0,n].

Theorem 23. Let S0 = 0 and Sj =
∑j

`=1 X` for 1 ≤ j ≤ n, where
X1, . . . , Xn are exchangeable random variables. Let S[0,n] = {(j, Sj) : 0 ≤
j ≤ n} and let C̄ [0,n] be the concave majorant of S[0,n]. Suppose c̄[0,n] ∈
Supp(C̄ [0,n]). Let q(·) be the probability density function on Nn that is the re-
gular conditional distribution of Ξ[0,n] conditionally given C̄

[0,n]
ρ = c̄[0,n]. Let

(Nn,1, Nn,2, . . . , Nn,Kn) be a composition of n chosen according to the density
function q(·), independently of {Xj : 1 ≤ j ≤ n}.

Conditionally given {Kn = k} and {Nn,i = ni : 1 ≤ i ≤ k}, let Y1, . . . , Yn

be random variables, independent of all previously introduced random va-
riables, whose joint law that is the regular conditional joint distribution of
X1, . . . , Xn conditionally given {Sj ∈ dc̄[0,n](j), j =

∑m
i=1 ni, 1 ≤ m ≤ k}.

Conditionally given Y1, . . . , Yn, let B be the random set of (n1, . . . , nk)-
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cyclic permutations of [n] such that

Yσ(j) ≥ c̄[0,n](j) for 1 ≤ j ≤ n

if and only if σ ∈ B. Let ρ̂ be an independently chosen uniform random
element of B, and let Sρ̂

j =
∑j

`=1 Yρ̂(`) for 1 ≤ j ≤ n. Then S
[0,n]
ρ̂ :=

{(j, Sρ̂
j ) : 1 ≤ j ≤ n} has the regular conditional distribution of S[0,n]

conditionally given C̄ [0,n] = c̄[0,n].

The theorem is direct result of Bayes’ rule and Theorem 1. Note that
when X1, . . . , Xn satisfy assumption A, N (c̄[0,n]) has only one element, the
composition induced by the lengths of the faces of c̄[0,n], and A also only
contains one element by Lemma 2, so the theorem simplifies significantly. It
remains to describe q(·).

Lemma 24. Suppose c̄[0,n] ∈ Supp(C̄ [0,n]) and that X1, . . . , Xn are exchan-
geable. The regular conditional distribution of Ξ[0,n] conditionally given C̄

[0,n]
ρ =

c̄[0,n] is given by

P(C̄ [0,n](j) ∈ dc̄[0,n](j), 1 ≤ j ≤ n)P(ΞK
[0,n] = (n1, . . . , nk)|C̄ [0,n]

ρ = c̄[0,n])

= 1(n1,...,nk)∈N (c̄[0,n])

∏k
i=1 ni∏f(c̄[0,n])

j=1 kj(n1, . . . , nk)!
P(Sj ∈ dc̄[0,n](j), j =

∑l
i=1 ni, 1 ≤ l ≤ k)

where Sj, 1 ≤ j ≤ n is as in Theorem 23.

Proof. Let (n1, . . . , nk) ∈ N (c̄[0,n]). Following the construction in Theorem
1, by the Ewens sampling formula the probability that {Ln,1, . . . , Ln,Kn} is a
list of the elements of (n1, . . . , nk) in non-increasing order is

(∏n
j=1(aj !)−1

)(∏k
i=1 n−1

i

)
where aj = #{i : 1 ≤ i ≤ k, ni = j} for 1 ≤ j ≤ n. Conditionally given
{Ln,1, . . . , Ln,Kn} is a list of the elements of (n1, . . . , nk) in non-increasing
order the probability of the event {ΞK = (n1, . . . , nk), C̄ [0,n] = c̄[0,n]} is ∏n

j=1 aj !∏f(c̄[0,n])
j=1 kj(n1, . . . , nk)!

P(Sj ∈ dc̄[0,n](j), j =
l∑

i=1

ni, 1 ≤ l ≤ k)

where the denominator in the multiplicative factor in the brackets is due to
the restrictions on the orderings of partition segments within each face, and
the numerator is because of repeated segment lengths. �

We say that the concave majorant of a walk is trivial if it has only one
face. A particularly useful form of Theorem 23 arises from the special case
when the increments X1, . . . , Xn are independent, the probability that the
concave majorant of S[0,n] is trivial with slope zero is positive, and we want
the conditional distribution of the walk S[0,n] given it has trivial concave
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majorant of slope zero. By subtraction of a line of constant slope, this gives
us the conditional distribution of the walk S[0,n] given it has trivial concave
majorant of any slope, as long as the probability that the concave majorant
of S[0,n] is trivial with that slope is positive. In the case where we want
the regular conditional distribution for S[0,n] conditional on having trivial
concave majorant of a slope that has zero probability, then the only possible
value for Ξ[0,n] is the trivial composition (n).

Corollary 25. Let S0 = 0 and Sj =
∑j

i=1 Xi for 1 ≤ j ≤ n, where
X1, . . . , Xn are independent identically distributed random variables, and let
S[0,n] = {(j, Sj) : 0 ≤ j ≤ n}. Suppose that

ptriv := P(concave majorant of S[0,n] is trivial with slope zero) > 0

Define a probability density function q(·) on Nn by

q ((n1, . . . , nk)) =
1

ptrivk!

k∏
i=1

niuni

where uj = P(Sj = 0) for 1 ≤ j ≤ n. Let (Nn,1, Nn,2, . . . , Nn,Kn) be a
composition of n chosen according to the density function q(·), independently
of {Xj : 1 ≤ j ≤ n}.

Conditionally given {Kn = k} and {Nn,i = ni : 1 ≤ i ≤ k}, independently
for each 1 ≤ i ≤ k let Yn1+···+ni−1+1, . . . , Yn1+···+ni be random variables,
independent of all previously introduced random variables, whose joint law
that is the regular conditional joint distribution of X1, . . . , Xni conditionally
given

∑ni
`=1 X` = 0.

Conditionally given Y1, . . . , Yn, let B be the random set of (n1, . . . , nk)-
cyclic permutations of [n] such that

Yσ(j) ≤ 0 for 1 ≤ j ≤ n

if and only if σ ∈ B. Let ρ̂ be an independently chosen uniform random
element of B, and let Sρ̂

j =
∑j

`=1 Yρ̂(`) for 1 ≤ j ≤ n. Then S
[0,n]
ρ̂ :=

{(j, Sρ̂
j ) : 1 ≤ j ≤ n} has the regular conditional distribution of S[0,n]

conditionally given S[0,n] has trivial concave majorant with slope zero.

8 A path transformation

This section provides an important path transformation which by taking
scaling limits is used by Pitman and Uribe Bravo to completely describe
the concave majorant (or as in that paper, convex minorant) of a Lévy
process and the excursions of that process beneath its concave majorant [15].
Essentially, the idea is that a uniformly sampled face of the concave majorant
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g u d d− u d− g d

1 2 3 4 3 2 1 4

Fig. 3: An example of the “3214” path transformation of Theorem 26. The
walk on the right is the transformed version of the walk on the left. Note
how given d − g the transform is easily inverted - the index at which the
first d − g increments should start after cyclic permutation is marked, and
can be found by lowering a line with the slope the mean of the first d − g
increments.

should have uniform length and the walk over it should be a Vervaat like
transform of some walk of the same length.

Let S0 = 0 and Sj =
∑n

i=1 Xi for 1 ≤ j ≤ n, where Xi, i = 1, . . . , n are
exchangeable random variables satisfying assumption A. We introduce the
following path transformation for the random walk S[0,n] = {(j, Sj) , 1 ≤
j ≤ n}. Let U be distributed uniformly on [n]. Let g and d be the left and
right end points respectively of the face of the concave majorant of S[0,n]

containing the Uth increment XU . Define SU
j for 1 ≤ j ≤ n by

SU
j =


SU+j − SU for 0 ≤ j < d− U

Sg+j−(d−U) + Sd − Sg − SU for d− U ≤ j < d− g

Sj−(d−g) + Sd − Sg for d− g ≤ j < d

Sj for d ≤ j ≤ n.

(21)

and let S
[0,n]
U = {(j, SU

j ) , 1 ≤ j ≤ n}.

Theorem 26.
(U, S[0,n]) d= (d− g, S

[0,n]
U )

In fact, Theorem 26 provides an alternative method of proving Theorem
1 under assumption A, since by applying the transformation again to the
S

[0,n]
U restricted to the interval [d−g, n], and then doing this repeatedly until

there is nothing left to transform, we are actually performing the inverse
of the transformation given in Theorem 1. However, this method does not

33



extend to cover the general case as considered in Section 6, so we will not
expand on it.

Proof. As in the proof of Theorem 1 under assumption Ain Section 2, it is
enough to show that the equality in distribution holds when X1, . . . , Xn are
samples without replacement from x1, . . . , xn satisfying assumption A. S[0,n]

and S
[0,n]
U may thus be thought of as permutations of n, so we may think

of the mapping (U, S[0,n]) 7→ (d − g, S
[0,n]
U ) as a mapping from [n] × Σn to

itself. Since U is uniform on [n], and the ordering of X1, . . . , Xn is a uniform
random permutation of x1, . . . , xn, it is enough to show that this mapping
is a bijection. To do this, it suffices to show that the mapping is surjective.
This can be seen visually in Figure 3 since it is clear from the figure and its
description that the map is easily inverted. More formally, to show that the
map is surjective it is sufficient to show that for k ∈ [n] there exists u ∈ [n]
and σ ∈ Σn such that(

u, {(0, 0), (1, xσ(1)), (2, xσ(1) + xσ2), . . . , (n,
n∑

i=1

xσ(i))}

)

7→

(
k, {(0, 0), (1, x1), (2, x1 + x2), . . . , (n,

n∑
i=1

xi)}

)
Let f be the number of faces of the concave majorant of the walk of length
n − k with increments xk+1, . . . , xn, and let the lengths and increments of
these faces in order of appearance be (`1, s1), . . . , (`f , sf ). Let r be the unique
r ∈ [k] such that the walk with increments

(xr+1, x(r+1)mod k +1, x(r+2)mod k +1, . . . , x(r+k−2) mod k +1, xr)

remains below its concave majorant. Let s∗ =
∑k

i=1 xi, and let m be the
unique m ∈ {0, . . . , f} such that

sm

`m
>

s∗

k
>

sm+1

`m+1

where we say that s0/`0 = +∞ and sf+1/`f+1 = ∞. The appropriate
(σ(1), . . . , σ(n)) is given by

(k + 1, k + 2, . . . , k +
∑m

i=1 `i,

r + 1, (r + 1) mod k + 1, (r + 2) mod k + 1, . . . , r, k +
∑m

i=1 `i + 1, . . . , n)

�
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